Exercise 29

Let

$$
f(x)= \begin{cases}\sqrt{-x} & \text { if } x<0 \\ 3-x & \text { if } 0 \leq x<3 \\ (x-3)^{2} & \text { if } x>3\end{cases}
$$

(a) Evaluate each limit, if it exists.
(i) $\lim _{x \rightarrow 0^{+}} f(x)$
(ii) $\lim _{x \rightarrow 0^{-}} f(x)$
(iii) $\lim _{x \rightarrow 0} f(x)$
(iv) $\lim _{x \rightarrow 3^{-}} f(x)$
(v) $\lim _{x \rightarrow 3^{+}} f(x)$
(vi) $\lim _{x \rightarrow 3} f(x)$
(b) Where is f discontinuous?
(c) Sketch the graph of f.

Solution

Evaluate each of the limits.
(i) $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0}(3-x)=3-0=3$
(ii) $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0} \sqrt{-x}=\sqrt{0}=0$
(iii) $\lim _{x \rightarrow 0} f(x)=$ Does not exist because left-hand and right-hand limits are unequal
(iv) $\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3}(3-x)=3-3=0$
(v) $\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3}(x-3)^{2}=(3-3)^{2}=0$
(vi) $\lim _{x \rightarrow 3} f(x)=0$
$\sqrt{-x}, 3-x$, and $(x-3)^{2}$ are all continuous on the intervals they're defined on, since the first is a root function and the last two are polynomial functions. As a result, any points of discontinuity can only occur at the endpoints, $x=0$ and $x=3$, of the intervals. The function is discontinuous at $x=3$ because

$$
\lim _{x \rightarrow 3} f(x) \neq f(3)=\text { undefined }
$$

but the function is discontinuous at $x=0$ because

$$
\lim _{x \rightarrow 0} f(x) \neq f(0)=3 .
$$

These results are confirmed in the graph of $f(x)$ versus x.

